Extensions 1→N→G→Q→1 with N=C116 and Q=C22

Direct product G=N×Q with N=C116 and Q=C22
dρLabelID
C22×C116464C2^2xC116464,45

Semidirect products G=N:Q with N=C116 and Q=C22
extensionφ:Q→Aut NdρLabelID
C116⋊C22 = D4×D29φ: C22/C1C22 ⊆ Aut C1161164+C116:C2^2464,39
C1162C22 = C2×D116φ: C22/C2C2 ⊆ Aut C116232C116:2C2^2464,37
C1163C22 = C2×C4×D29φ: C22/C2C2 ⊆ Aut C116232C116:3C2^2464,36
C1164C22 = D4×C58φ: C22/C2C2 ⊆ Aut C116232C116:4C2^2464,46

Non-split extensions G=N.Q with N=C116 and Q=C22
extensionφ:Q→Aut NdρLabelID
C116.1C22 = D4⋊D29φ: C22/C1C22 ⊆ Aut C1162324+C116.1C2^2464,15
C116.2C22 = D4.D29φ: C22/C1C22 ⊆ Aut C1162324-C116.2C2^2464,16
C116.3C22 = Q8⋊D29φ: C22/C1C22 ⊆ Aut C1162324+C116.3C2^2464,17
C116.4C22 = C29⋊Q16φ: C22/C1C22 ⊆ Aut C1164644-C116.4C2^2464,18
C116.5C22 = D42D29φ: C22/C1C22 ⊆ Aut C1162324-C116.5C2^2464,40
C116.6C22 = Q8×D29φ: C22/C1C22 ⊆ Aut C1162324-C116.6C2^2464,41
C116.7C22 = Q82D29φ: C22/C1C22 ⊆ Aut C1162324+C116.7C2^2464,42
C116.8C22 = C232⋊C2φ: C22/C2C2 ⊆ Aut C1162322C116.8C2^2464,6
C116.9C22 = D232φ: C22/C2C2 ⊆ Aut C1162322+C116.9C2^2464,7
C116.10C22 = Dic116φ: C22/C2C2 ⊆ Aut C1164642-C116.10C2^2464,8
C116.11C22 = C2×Dic58φ: C22/C2C2 ⊆ Aut C116464C116.11C2^2464,35
C116.12C22 = C8×D29φ: C22/C2C2 ⊆ Aut C1162322C116.12C2^2464,4
C116.13C22 = C8⋊D29φ: C22/C2C2 ⊆ Aut C1162322C116.13C2^2464,5
C116.14C22 = C2×C292C8φ: C22/C2C2 ⊆ Aut C116464C116.14C2^2464,9
C116.15C22 = C4.Dic29φ: C22/C2C2 ⊆ Aut C1162322C116.15C2^2464,10
C116.16C22 = D1165C2φ: C22/C2C2 ⊆ Aut C1162322C116.16C2^2464,38
C116.17C22 = D8×C29φ: C22/C2C2 ⊆ Aut C1162322C116.17C2^2464,25
C116.18C22 = SD16×C29φ: C22/C2C2 ⊆ Aut C1162322C116.18C2^2464,26
C116.19C22 = Q16×C29φ: C22/C2C2 ⊆ Aut C1164642C116.19C2^2464,27
C116.20C22 = Q8×C58φ: C22/C2C2 ⊆ Aut C116464C116.20C2^2464,47
C116.21C22 = C4○D4×C29φ: C22/C2C2 ⊆ Aut C1162322C116.21C2^2464,48
C116.22C22 = M4(2)×C29central extension (φ=1)2322C116.22C2^2464,24

׿
×
𝔽